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Many-particle systems 
VI. N-fermion systems : derivation of a lower-bound shell 
model 

R. J. M. CARR? and H. R. POST 
Chelsea College, University of London 
MS. received 10th June 1968 

Abstract. The programme of reducing N-particle problems to one-particle problems 
is extended to include the Pauliprinciple. T o  calculate the ground-state energy of a system 
of N fermions interacting by pair forces, a rigorous lower-bound shell model is derived. 
This shell model follows a building-up principle, and tends to improve with increasing 
number of particles as well as with increasing strength of interaction. For twenty 
particles antisymmetric in ordinary space interacting by square-well interaction of 
strength Voa2  = 200A2/2m the shell model differs by less than 8 % from the calculated 
upper bound, and hence a fortiori from the exact energy. In order to test the quality 
of the approximation for various interactions, it was necessary to calculate upper 
bounds. 

1. Introduction 
The N-particle problem has been solved exactly in quantum mechanics in the case of 

a few interactions (Hooke’s forces::) delta functions in one dimensions) only. The quantum- 
mechanical N-particle problem is, of course, simpler than the corresponding classical 
problem in at least two respects: we do not specify positions and momenta independently, 
and we have the strong symmetry restrictions arising from the non-individuality of 
particles. I I 

The latter restriction was used in I1 to reduce the N-particle problem to an equivalent 
one-particle variational problemq subject to the condition that the trial functions be trans- 
lation-invariant and totally symmetric (in the case of bosons) or totally antisymmetric (in 
the case of fermions). The requirement of translation invariance is far from trivial in its 
consequences. On the other hand, it is just the translation invariance requirement in 
conjunction with the symmetry requirement that renders the reduction of the trial function 
to the space of one (vector) variable difficult. 

In  the case of bosons we dropped the symmetry requirement to arrive at a lower bound 
for the ground-state energy. This lower bound turned out to be close to the exact value 
for a large range of interactions (111, IV, V). This was proved by comparison with an 
easily determined upper bound. I t  is still not clear why the lower bound should provide 
such a good estimate for bosons with short-range interactions. It is at the same time a 
lower bound for the energy of N fermions with the same interaction, but would hardly be 
expected to be close to the exact ground-state energy in that case. 

In  the case of fermions it can easily be proved that for N 2 3, no single trial function 
in the one (vector) variable can be the projection of the totally antisymmetric wave function 

$ For example, Post (1953); that paper and Post (1956), Post (1962), Hall and Post (1967), 

§ NIcGuire (1964). 
I [  This condition is stronger than mere indistinguishability (which is ensured by the symmetry 

of all operators corresponding to possible measurements). The latter would not, for instance, allow 
the reduction to one-particle problems used in this and preceding papers of this series. 

T[ We do not consider a reduction to an irreducible two-particle problem (cf. Bopp’s (1959) 
reduction of an N-electron atom to the helium problem) a solution of the N-body problem. Such 
a reduction is already implied in the limited number of double integrals involved in the case of pair 
interactions. We are concerned with the reduction to a one-particle problem, and are dealing with 
an N-particle system in translation-invariant formulation. 

Now at Bedford College, University of London. 

Hall (1967) will be referred to as I, 11, 111, IV and V, respectively. 
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on to that subspace of one variable. Instead of developing a quantitative estimate of the 
maximum contribution of any one function, we proceed in this paper to derive a lower- 
bound model in the general case of N fermions. This lower-bound model is a shell model 
exhibiting a Pauli 'Auf bau-prinzip'.? 

2. Proof 

The  Hamiltonian is 
We consider a system of N identical particles with pair interaction in three dimensions. 

z.2 N N 

where m is the mass of any particle, and the ith particle has the position vector ri. 
Let us consider the class of normalized translation-invariant trial functions 

Y(r , ,  r2 ,  ..., r N )  for the problem, obeying the usual boundary conditions of quantum 
mechanics. Since we have identical particles, we further restrict this class to those functions 
which are symmetric with respect to the interchange of any pair of particles 1, 2, ..., N if 
they are bosons (or antisymmetric if they are fermions). We denote this symmetry (or 
antisymmetry) by writing ?V(rl, r2,  ..., r N )  for any member of this sub-class which we label 
the class L. The  ground-state energy E ,  for the system is given by 

E ,  = minimum of (Y, HY) 

the minimization being with respect to all functions of the class L. We are insisting on 
translation invariance; therefore the variables rl, r2 ,  ..., r N  are not independent. Through- 
out this section we have only 3hT-3 independent variables. 

We may consider E ,  to be the expectation value, minimized with respect to functions 
of class L, of a new Hamiltonian 

since all 'Y are symmetric (or antisymmetric) in the particles 1, 2, ..., N.  Thus 

Eo = minimum of (Y(rl, r2,  ..., rN) ,  H1'Y(rl, r2,  ..., rN)) .  

The  condition of symmetry (or antisymmetry) with respect to the interchange of 
particle 1 with any of the particles 2, 3 ,  ..., N is now dropped. We may now choose from 
a larger class of functions M when minimizing. Symmetry (or antisymmetry) in 2, 3 ,  ..., N 
is a necessary condition for symmetry (or antisymmetry) in 1, 2, 3 ,  ..., N,  since L c M. 
With this larger choice M (retaining translation invariance and all previous conditions 
except for the relaxation of symmetry (antisymmetry)), it may be possible to minimize 
further, and in any case we can still obtain E ,  as before. Hence 

Eo 2 minimum of ('Fl(rl, r2, ..., rAr), HIYl(rl, r2 ,  ..., r N ) )  

where y?, denotes any member of the class M. The  particular function of the class M 
which minimizes this will be written $l(rl, r2 ,  ..., rAT). Thus 

Eo 2 ($1, Hl$d (1) 

t This model was found by one of us several years ago. Subsequent work, also reported here, 
was largely devoted to the sometimes somewhat elaborate task of establishing upper bounds to arrive 
at an upper (pessimistic) estimate for the error involved in substituting the lower bound for the 
exact value of the ground-state energy. This indirect checking incidentally involved the use of 
computers. The  object of projects like the present one is, of course, to derive a general solution, 
a finite expression to supersede any collection of numbers put out by computers. 
4A 
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where $l is symmetric (or antisymmetric) in at least particles 2, 3, ..., N.  
Let the mass of particle 1 be denoted by m,. The Hamiltonian H ,  becomes 

when m, = m. If the mass ml is increased, the expectation value 

($l(% r2, ' * . ,  r N ) ,  H2$1@1, r2, . * * )  rev)) 

($17 Hdl)ml a m  6 ($1, H 2 $ 1 ) m l = m .  

if we keep the same function $, defined as above, decreases algebraically, i.e. 

(3) 
This follows immediately from noting that 

-($I, $1) = (vrl $1, Vrl $1) 2 0 
and hence that - (h2/2m)(#1, A,l $1) is a decreasing function of m. Thus from (l), (2) 
and (3), for any m, > m, 

Eo 2 ($1, Hl$d 2 ($1, H2$1). 

We introduce new coordinates pi  by means of the transformation 

etc. 

0 

0 

0 

M is the total mass of the system, i.e. M = m,+(N- 1)m. Thus from (4) 

EO 2 ($1, H Z $ l )  E ($1, H3#1)  

where 

The  expectation values(#,, H2&) and H&) denote the same physical quantity. The trans- 
formation ( 5 )  merely changes the coordinates. It should be noted that p1 is the centre-of 
mass coordinate and is orthogonal to p2, p 3 ,  ..., p N .  Initially we took $, to be translation- 
invariant. Thus, if we denote by #2 the function obtained by expressing #1 in terms of 
Pl,  P 2 ,  * ' a ,  P N  then 

#1(r1, r2, r N )  = $Z(PZ,  -..> P N ) .  

($, is symmetric (or antisymmetric) in at least particles 2, 3, ..., N.) Hence from (6) 

EO 2 ($1, H3$1) E ( $ 2 ,  H3#2)*  (7) 
The  only term in H ,  which contains p1 is the kinetic energy term for the centre of mass. 
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Thus from ( 7 ) ,  for any ml 2 m, 

From (6), (7) and (8) we have (&, H2$l) = H4$2); thus the inequality (3) becomes 

($2, H4$2)m~>/m G ($29 H4$2)mi=71L‘ (9) 
Now, let ml + CO while retaining the trial function t,h2. All the elements of the square 

matrix in ( 5 )  tend to zero except the diagonal elements, which tend to unity. The  co- 
ordinates pz, ..., pN become orthogonal and identical with r2, ..., rN,  respectively. In  the 
limit (9) becomes 

m, lim -30 ( $ 2 ,  H4$2) 6 ($2, H4$2)mi=m. (10) 

We have from (8) and (10) 

EO 2 J)ym ($2, H4$2) = ($2(r2, r N ) ,  2$2(r29 r N ) )  (11) 
where 

The  expectation value of 8 is now minimized with respect to the functions of class M, 
thus maintaining or strengthening the inequality (11). The  minimizing function is the 
lowest eigenfunction of 2, which we denote by @(r2, r3 ,  ..., rN) .  Let 

x2 

with 

we take pn to be normalized to unity. Then 
kPn(ri)  = %Vn(ri);  

N 
X = 2 hi. 

i = 2  

We have a shell system of N-1 independent particles interacting with a fixed centre of 
force, a model whose ground-state energy is a lower bound to the true energy of the 
original problem. 

T o  construct the lower bound, we simply fill the lowest N -  1 levels of the shell model. 
For a boson system all particles may occupy the same state. The  function 0 is simply the 
product yo(r2)  yo(r,) ... vo(rN), where y o  is the ground state of h,, giving a lower bound 
which we shall denote by 8, such that E ,  2 d = (N- 1)c0, where E ,  is the lowest eigen- 
value of hi. 

For fermions each shell-model particle must occupy a different state. The  lowest 
eigenfunction of 2 will be the Slater determinant formed from the first N-1 eigen- 
functions of hi, namely 

Ivo(r2) Pl(r2) . * * PN-Z(%)I 

?N - 2 ( r N )  

giving a lower bound 8 = E ~ + E ~ +  ... 
the shell-model levels are correspondingly increased. 

If we introduce spin the degeneracies of 
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3. Hooke’s interaction 
The method described above will be applied to some fermion systems with central 

force interactions. The  lower bound will be compared with upper bounds obtained using 
the Rayleigh-Ritz variational principle. First, however, we discuss a system for which 
the true energy is known. The  problem of N fermions interacting by Hooke’s law forces 
has been solved exactly. We shall use the solution given by Post (1953). The ground-state 
energy in the one-dimensional problem is given by Eo = ( N 2  - l )dNk’ ,  for an interaction 
Vi j  = k 2 ( x i - x , ) 2  between the ith and j t h  particles (k’ = (fi2/2m)i’2k).  For the same 
problem the lower bound is given by 8 = (N- l)2((gN)i~zk’. 

As a criterion of quality we take the ratio of exact (or upper-bound) to lower-bound 
energies when these are measured in the usual manner from the bottom of the continuous 
spectrum. This ratio will be less than unity and must increase to show improvement. 
For bound states the energies will be negative, the corresponding magnitudes being the 
‘binding energies’. In  the case of the ‘harmonic oscillator’ interaction, however, the energies 
are positive and the concept of ‘binding energy’ is not strictly applicable. The  zero of 
energy in the case of ‘harmonic oscillator’ interaction is taken for all particles coincident, 
with no kinetic energy. From above Eo/& = 2/2(N+ l)/(N- 1 ) )  which is greater than 
unity and decreases monotonically with N. In  this sense the lower bound improves in 
this case as the number of particles is increased. 

For an interaction Vi, = k2(ri  - r j )2  in three dimensions we do not have an explicit 
energy expression for any and all N. The energy of the ground state is given by 
Eo = (3+5+5+5+ ...)2/ Nk’-32/Nk’ to N terms in the bracket. We have ‘shells’ of 
$(m+l)(m+2) levels, each level of energy (Zm+33)2/Nk’; m = 0 ,  1,2 ,  ... . For the 
corresponding lower bound 8 = (3 + 5 + 5 + 5 + ...)(&N)ll2k’ to N -  1 terms in the bracket. 
Again each shell has &(m+ l)(m+ 2) levels, but of energy (2m+ 3)(&N)1/2k’; m = 0, 1, 2, ... . 
We see that (Eo/&), > (Eo/8),+l except when N gives a closed ‘shell’ for the exact 
problem. 

Let us consider those values of N which give p+ 1 closed ‘shells’ for the exact problem, 
i.e. 

4 

N = 2 4(m+l)(m+2) = $(p+l)(p+2)(q+3). 
m=O 

For these cases we can write 

Eo = I( m + l ) (m + 2)(2m + 3 )  4Kk’ - 3 vIlVk’ 
m=O 

= $(p+ l ) (q+2)2(q+3)2/Nk’  -3v”‘ 

and 

m + l ) (m + 2)(2m + 3)(9N)1’2k’ - (2g+ 3)(&v)1’2k’ 
m=O 

= $(p+ l ) (q+2)2(q+ 3 ) ( & i V ) l W  -(2q+ 3)(41%-)”:”k’. 
Comparing successive closed ‘shells’, we see that (Eo/&), > (Eo/G),+l. We have the same 
overall trend of improvement as N increases. 

4. Square-well interaction 

take the one-dimensional case : 
The problem of interaction by ‘square-well’ forces will be considered next. First, we 

l , x  < 1  
0,x > 1. 

The reduced Hamiltonian 
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We introduce the dimensionless quantities E’ and V‘, defined as 

2mEa2 2m Voa2 
V’ = -, 

&2 ’ A2 
E’ = - 

Eigenvalues of hi are found by solving the equations 

K tan x = ,B 
K cot K = -,B 

(even solutions) 
(odd solutions) 

where 
x = ($NV’ +E’)1’2, p = ( --E’)1/2. 

We do not have explicit solutions for the equations (12)’ but if K, satisfies one of them 
we may write 

These inequalities lead to bounds on the shell-model energy 8’ : 
Hmn 1 < K ,  < $(m+ 1)x; m = 0 , 1 , 2  ,.... 

N - 2 N - 2  

an2 2 m2-&Ai(N-1)V’ < 8’ < ax2 2 ( m + l ) 2 - ~ N ( N - l ) V ’  
m=O m=O i.e. 

772 7T2 
-((N-l)(-V-2)(2iV-3) -&N(N-l )V‘  < 8’ Q - AV(N-l)(2N-6) -&N(N-l)V’.  
24 24 

The  relations are valid only for V’ > (N-1)2x2/2N, in order that all filled shell-model 
levels are bound. 

The  single-particle ‘infinitely deep square-well’ problem with potential function 
0 < x <  1 

V(x)  = lo, 
03. x < o . x >  1 

has solutions 

We construct from these solutions a trial function CD to give an upper bound E‘ to the 
exact energy : 

This is not translation-invariant, and the resulting upper bound will contain some centre- 
of-mass energy. But this is positive (kinetic energy) and will only lead to the upper bound 
being weaker. The  effect of using CD as a trial function is to confine all the particles to the 
region 0 < x < 1. We have a ‘collapsed state’, in which each particle lies within range of 
every other. The  expectation value with respect to 0 of the true Hamiltonian is easily 
evaluated, giving 

N 

E’ = 2 ( % T ) ~  -gLV(S -1)V’ = *X(N+ 1)(2N+ 1 ) ~ ’  -3N(N -1)V’. 
11 = 1 

The  ‘collapsed-state’ upper bound does not give any useful information as to the 
increase of E/& with N .  In  fact, for any given V’ the upper bound always becomes positive 
for sufficiently large N. The  kinetic energy is proportional to N 3 ,  while the potential 
energy is proportional to N 2  when N is large. However, the binding energy of the lower- 
bound shell model increases with N. Here the number of bound single-particle states 
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3 

D = TI ( X r  -X3) = 
i < 3 = 1  

is for large N proportional to (NV')1/2. As N increases, there will be an insufficient number 
of bound states to accommodate all the shell-model particles. In  filling the shell-model 
levels, when all the bound states have been assigned the remaining particles can only be 
given states in the continuous spectrum with ei  = 0. Thus not all shell-model particles 
contribute to the overall binding energy, but the number of available bound states in- 
creases with N.  The condition that the 'collapsed-state' energy E' is negative ensures 
at least N - 1  bound states in the lower-bound shell model. For V' + CO we see that 
E/& --f 1 for all N. 

We now examine the two- and three-particle cases more closely. Table 1 gives the 
lower bound for two particles and the corresponding exact solution. Eo/& increases with 
V' and Eo/& -+ 1 for V' -+ CO. E,,' = 0 for V' = $2. 

X I  x2 5 3  

x12 X22 X32 

Table 1. Two particles in one dimension with square-well interaction 

V' Eo' &' e018 

x2 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 

- 1.863 
-9.248 

-17.946 
-27.1 16 
-36.524 
-46.073 
- 55.71 2 
-65.415 
-75.165 
-84,950 
-94.762 
- 104.600 

-8,593 
-18.361 
-28.241 
- 38.1 64 
-48.109 
-58.067 
-68.033 
- 78.006 
-87,982 
-97.962 
- 107 945 
-1 17.929 

0.217 
0.504 
0,636 
0.711 

0.793 
0.819 
0.839 
0.854 
0.867 
0.878 
0.887 

0.759 

1 1 
0 __ 

d2 d2 

El is the centre-of-mass coordinate. The  reduced configuration space is two-dimensional. 
The  planes xi = xj become the lines t2 = 0, t2 = 4 3 5 , .  We shall denote points in 
the (e2, t3) plane by polar coordinates (R, 4) such that E2 = R sin+, t3  = R cos+;  
R 2 0 ,0  < 4 < 27~. Written in reduced coordinates 
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R = ([22+532)112 is invariant under the interchange of any pair of particles; hence we 
may multiply D by any suitable normalizing function of R and take F(R) sin 34 as trial 
function. The  sin 3+ term provides three nodes coincident with the lines f 2  = 0, 

The  choice of the function F(R)  is based on the ground state of the corresponding two- 
Ea = + 1 / 3 , $ 3 .  

particle problem. A trial function with range p is taken: 

ARa3 cos a,R, < P  
BR”8 exp( -4a2R), R ’ P  

F(R) = 

where a,, a2, a3 are variable parameters and A, B are normalization constants. The  resulting 
expression for the upper bound energy E’ is given in the appendix. This energy was 
minimized numerically with respect to a,, a2, a3 by the method of Rosenbrock (1960). 
Table 2 gives the minimizing values of a,, a2, a3 and corresponding E’ for given V‘ and 

Table 2. Three particles in one dimension with square-well interaction 

v‘ a1 a2 a3 P E‘ 8‘ El 8 

10 6.528 8.3 4.2 
20 1.765 9.5 2.9 
30 1 ~ 8 2 0  11.5 2.6 
40 1.873 13.4 2.5 
50 1.912 15.1 2.5 
60 1.940 16.7 2.5 
70 1.961 18.2 2 $4 
80 1.977 19.6 2.4 
90 1.990 20.8 2.4 

100 2.002 21.6 2 *4 
110 2.01 1 22.9 2.3 
120 2,020 23.8 2.3 

0.087 
0.689 
0,694 
0.693 
0.692 
0.692 
0.693 
0,694 
0.694 
0.693 
0.695 
0.694 

-4.310 
-22,557 
-45.766 
- 71 ~ 3 6 4  
-98.269 
- 125.955 
- 154.142 
-182,670 
- 21 1.445 
-240.405 
- 269.503 
-298.714 

- 22.426 
-51,277 
-80,717 

-110.365 
- 140.1 17 
-169.929 
-199,780 
- 229.658 
-259.556 
- 289.468 
-319.392 
- 349.325 

0,192 
0.440 
0.567 
0.647 
0,701 
0.741 
0.772 
0.795 
0.81 5 
0,831 
0.844 
0.855 

the shell-model lower bound 8‘ is compared with this upper bound. As in the two-particle 
case, E/€  improves with increasing V’. The lower bound 6’ passes through the origin. 
T o  find the point at which the energy E’ becomes positive a numerical minimization of V’, 
keeping E’ = 0, was performed. I t  was found that E‘ becomes positive for V’ = 6,0698, 
i.e. for V’ greater than this figure there is certainly an antisymmetric bound state. Com- 
paring the two- and three-particle cases (table 1 with table 2), we see that for every value 
of V’ taken > We have failed to demonstrate improvement with 
increasing N in this, the one-dimensional case. Experience with other trial functions leads 
us to believe that the upper bound is close to the exact ground state and that we have a 
counter example to the conjecture of improvement with increasing N .  

We now turn to the three-dimensional case. As in the one-dimensional case, we shall 
not attempt to evaluate the energy levels of the lower-bound shell model for N particles 
exactly but will give convenient bounds. Let us consider the infinitely deep spherical-well 
problem. The  kinetic energies of the levels are found by solving the equation 

where J,, *(x) is a Bessel function of the first kind of order I +  & and 7’=(2ma2/h2) .  (kinetic 
energy). Margenau (1934) showed that in going from an infinitely deep to a finite-depth 
spherical well all the energy levels are depressed, and that in this displacement the level 
corresponding to j , ,  l , n  for infinite depth never falls below the original energy value 
corresponding to j , -  +,%. Thus for the finite-depth spherical-well problem we may write 

J ,+ dd7’) = 0 

The resulting bounds on the shell-model energy 8’ are 
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The summation is over the lowest N -  1 states of the shell model, note being taken of the 
21+1 degeneracy of each level. As in the one-dimensional case for the corresponding 
bounds, the above relations are only true when V’ is large enough to ensure that all 
occupied shell-model states considered are bound. 

In  the three-dimensional case we take as trial function for the upper bound the Slater 
determinant formed from the lowest N states of the infinitely deep spherical-well problem. 
Expressed in the usual spherical polar coordinates these states are 

Y,,,(B, 4) is a spherical harmonic and A a normalization constant. I t  is now necessary for 
the state function to vanish whenever Y > 3, in order to confine all particles within a 
collapsed state. The  upper bound we obtain is 

E’ = 2 4j:++,n -+N(N-l)V’ .  
The  summation covers the lowest N states, the 21+ 1 degeneracy being included as before. 

T o  discuss the increase of E/€  with N ,  we are obliged to take a numerical example as 
our upper and lower bounds are not explicit. The  potential well chosen must be deep 
enough for the two-particle upper bound to be negative. We take V’ = 200 as convenient 
and consider up to twenty particles. Table 3 compares the lower bound to the shell-model 

Table 3. N particles in three dimensions with square-well interaction 

V‘ = 200 
N E P’ EiP  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

-79.76 
-399.00 
-918.23 

-1585.4 
-2452.5 
- 351 9.6 
-4786.8 
-6253.9 
-7896.0 
-9700.6 

-11705 
-13910 
-16315 
-18919 
-21724 
- 24729 
- 27890 
-31251 
- 3481 3 

-197.53 
-587.66 

-1177.8 
-1967.9 
-2947.7 
-4127.5 
-5507.4 

-8867.0 
-7087.2 

-10845 
-13012 
-15378 
-17945 
- 2071 2 
-23679 
-26846 
- 3021 2 
-33773 
-37533 

0.404 

0,780 
0.806 
0.832 
0.853 
0.869 
0.882 
0.891 
0.895 
0.900 
0.905 
0.909 
0.914 
0.918 
0.921 
0.923 
0.925 
0.928 

0.679 

energy 9‘ with the ‘collapsed-state’ upper bound E‘ for this choice. We note that E l 9  
increases monotonically with N ,  indicating that the lower bound 8’ improves with N. 
The  kinetic energy of both E‘ and 9‘ is independent of V’. Thus, for V‘ + CO, E/& -+ 1 
for all N. 

T o  see how far the ‘collapsed-state’ upper bound lies above the exact energy and how 
far below the shell-model energy the lower bound lies we examine table 4. The upper 
bound E’ is poor, but the lower bound 2’’ gives values quite close to the true shell-model 
energy 8‘. Thus it may be concluded from table 4 that the quality of the shell-model 
lower bound is indeed better than table 3 suggests. Ideally we require lim (E/2’), but 
no suitable analytic solution of the two-body problem is available. Our purpose is to 

N i  m 
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investigate the quality of the lower bound; the lack of definite conclusions throughout 
the paper does not reflect on the lower-bound method itself. 

The  lower bound for two particles is compared with the exact solution in table 5 .  

Table 4. Three-dimensional square-well interaction 

V‘ = 200 N = 2  N = 3  

Collapsed-state upper bound E’ -79.759 - 398.996 

Shell-model energy 6‘ - 191.399 -573,155 
Lower bound 9’ -197.533 - 587.663 

- 166.789 - Exact ground state EO’ 

Table 5. Two particles in three dimensions with square-well interaction 

V’ 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 

EO‘ 
- 

-0,099 
-6,381 
- 14.328 
-22.934 
-31.898 
-41.087 
- 50.427 
-59.876 
- 69.407 
-78.999 
-88,642 

I‘ 

-4.624 
-13.558 
-23.036 
- 32.708 
-42.475 
-52,298 
- 62.1 58 
- 72‘043 
-81.947 
-91,864 

-101.792 
- 11 1 *729 

- 
0.007 
0.277 
0,438 
0.540 
0.610 
0.661 
0,700 
0.731 
0.756 
0.776 
0.793 

Eo/& increases with V’ and, as we expect from previous considerations, Eo/& -+ 1 for 
V’ -f CO. E,‘ becomes zero for Y’ = 2 2  and 8’ = 0 for V’ = &ra. 

5. Exponential interaction 
For N particles interacting by exponential forces in one dimension 

the reduced Hamiltonian hi is 

Its eigenvalues are found by solving the equations 

J d Y O )  = 0, for odd solutions 

and 

Jk’ (Y0)  = 07 for even solutions 

where 
k2 -4E’, yo2 = 2ArV’* 

Here 
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as in 5 4; J,(y) is a Bessel function of the first kind of order k (Bates 1961, p. 113). Table 6 
compares the lower bound for two particles with the corresponding exact solution. It 
should be noted that Eo/& increases with V‘. For V’ -+ CO, Eo/& .+ 1. Eo‘ becomes zero 
for V’ = 2.892. 

Table 6. Two-particles in one dimension with exponential interaction 

Exact solution Lower bound 
v‘ EO’ 6’ EO18 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 

- 1 .lo06 
-4.3648 
-8.5374 
- 13.248 
-18,333 
- 23 e700 
-29.291 
-35,067 
-40.999 
-47.064 
-53.248 
-59.535 

-6.0432 
-13.476 
-21.294 
-29.332 
-37,520 
-45.8 19 
-54.207 
-62.666 
-71.185 
-79.757 
-88.373 
-97.029 

0.182 
0.324 
0.4.01 
0,452 
0.489 
0.517 
0.540 
0.560 
0.576 
0.590 
0,603 
0.614 

Table 7. Three particles in one dimension with exponential interaction 

Upper bound Lower bound 
v’ a1 a2 E 8’ e18 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 

0.8 
1 e 9  
2.9 
3.9 
4-5 
5.7 
6.6 
7.3 
8.3 
9 a 0  
9.8 

11 

2.0 
2.2 
2.2 
2.3 
2.3 
2.3 
2.3 
2.3 
2.4 
2 *4 
2.4 
2.6 

-3.00 
-12.31 
-24‘34 
-38~10 
-52.88 
-68.47 
-84.80 

-101.7 
-119.1 
-136.9 
-155.1 
- 174.3 

-13.96 
-33.14 
-53.91 
-75.59 
-97.89 
- 120.7 
-143.8 
- 167.2 
- 190.9 
-214.8 
-238.9 
-263.2 

0.21 5 
0,372 
0.452 
0.503 
0.540 
0.568 
0.590 
0.608 
0.624 
0,637 
0.649 
0.662 

An upper bound 
the form F(R) sin 3$ 
in mind the ground 
‘Gaussian’ in shape. 

for the three-particle problem was obtained using a trial function of 
(see 5 4). We made the choice F(R) = AR”, exp (- $a1R2), bearing 
state of the corresponding two-particle problem which is roughly 
The  normalization constant is given by 

Taking the expectation value of the exact Hamiltonian with respect to this trial function, 
we may express the upper-bound energy E’ by 

where 

I1 = sr r’2 R1+2a, exp( -(alR2 + 2/2R sin $)} sin2 34 d$ dR. 
0 
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This E’ (essentially Ea2) was minimized numerically with respect to the parameters a,, a, 
in a manner similar to that for the ‘square-well’ interaction. Table 7 gives the minimizing 
values of these parameters with resulting E’ for given V’ and the shell-model lower bound 
€‘ is compared with this upper bound. The  ratio E/€  improves with increasing V’ as 
for two particles. The  upper bound E‘ becomes positive for V’ = 3.696. (This value was 
obtained by minimizing V’ numerically, keeping E’ = 0.) Comparing table 6 with table 7 ,  
we see that for the points considered the lower bound 8” is always better for three particles, 
i.e. we have improvement as N increases in this case. 

6. Conclusion 
A simple method has been devised to give a rigorous lower bound to the energy of 

N fermions interacting by pair forces. This lower bound improves monotonically as we 
deepen the potential well. For the non-saturating interactions studied the ratio of upper 
and lower estimates, and hence a fort iori  of exact to lower-bound values, tends to unity 
as the potential depth increases. We may understand this when we consider that in 
deriving our lower bound we effectively retained all +N(N- 1) pair interactions by 
scaling up the shell-model central force by a factor of BN. This gives a good potential 
energy approximation, and thus in deep wells where the potential energy dominates over 
the kinetic energy we obtain a good result for systems which do not saturate. 

With one exception, all our examples give better lower bounds for greater numbers of 
particles. I t  was at first conjectured that this improvement with increasing N held 
generally. However, for ‘square-well’ interaction in one dimension the collapsed-state 
upper bound failed to demonstrate this. ,4n improved upper bound minimized simul- 
taneously with respect to three parameters still fails to show a monotonic increase in the 
ratio of upper and lower bounds with increasing N. Thus we may have a counter example 
to the conjecture of monotonic improvement of the lower bound with increasing N. 

T o  derive the shell-model lower bound we proceeded in two steps. Firstly, we relaxed 
the antisymmetry condition with respect to the interchange of particle 1 with any of the 
particles 2, 3, ..., N. Secondly, we let the mass of particle 1 become very large, associating 
the centre of mass of the system with this particle. Since the first step interferes with 
one particle in N, we expect the overall binding energy to be little affected when 1 is small 
compared with N.  (cf. the smallness of the symmetry-restriction effect in IV.) Thus for 
large numbers of particles it is the second step, which we shall call the mass effect, that 
contributes most to the difference between the exact energy and the shell-model lower 
bound. This ‘mass effect’ depends on the interaction (cf. the ‘reduced mass effect’ of IV). 

It may be noted from $5 4 and 5 for one-dimensional problems that the lower bound 
Q’ always passes through the origin. This is true generally, for the lower bound admits 
even parity states, the lowest two-particle state in one dimension being bound for all V’. 
The  three-particle upper bounds are believed to be close to the exact energy, and since 
considerable effort is required to obtain such bounds for spatial antisymmetry they should 
serve as a useful standard for future work. The  lower-bound method will be most inter- 
esting for large numbers of particles, but in this case obtaining corresponding upper bounds 
for comparison is tedious. For square-well interaction in three dimensions the upper and 
lower bounds differ by less than 8% for twenty particles and a strength of interaction 
V’ = 200. However, we are less interested in the closeness of upper and lower bounds 
than in the existence of a lower bound following a building-up principle. 

It is interesting that the lower-bound model obtained is a strict shell model. We might 
hope to derive a similar shell model for the upper bound, and perhaps the existence of an 
exact solution of this type between these bounds. 

The  pragmatic situation is this: whilst no exact general solution of the N-body problem 
has been found, nature provides us with solutions exhibiting some aspects of a shell model, 
mainly in the form of some limited evidence in nuclear physics relating to the sequence of 
angular momenta with increasing N (Haxel et al. 1950). This evidence relates to fermion 
systems which also exhibit saturation. A further task in our programme would be to 
introduce saturating interactions. 
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Appendix 
We consider the upper-bound energy expression E’ for three particles in one dimension 

interacting by ‘square-well’ forces. This was obtained for a trial function of the form 
F(R) sin 34, where F(R) is given by (13) of 4 4. 

The condition that F(R) and its first derivative be continuous at R = p gives the 
relations 

A cos alp = B exp( -4a2p) 
and 

a, tan alp = Ba,. 

Normalization requires that r(A211 + B212) = 1 where 

Il  = s” cos2 a,R dR 
0 

and 
m 

I ,  = j R1+2a3 exp( -a,R) dR. 
P 

The kinetic energy is easily expressed in terms of integrals involving R only as 
+PI3 4- PI,) : 

m 

I3 = /’F3(R)dR I4 = j F4(R)dR 
0 P 

F3(R) = {(9 -a32)R2a3-1+a,2R2a3+1} cos2 alR+a,(a3 +4)R2a3 sin 2a1R 
F4(R) = ((9 -a32)R2a3-1 + a2(a3 +B)Rza3 - & ~ 1 ~ R ~ ~ 3 + ~  1 e XP(-@zR). 

For the potential energy the expectation value of - 3 V’f(2/2Rjsin $1) is required. 
Since f (42RIsin +])sin2 34 is symmetric about both the t2 and t3 axes it is not necessary 
to integrate over the whole of reduced configuration space. The obligatory area of 
integration is reduced to the shaded strip in the first quadrant (figure 1). 
This gives rise to 

sin -1(l/ i 2R) 

sin2 34 d+ 

which we denote +(R). This may 

where 

be expressed in closed form as 

(m) - 2R2 g(A)l 1 (2R2 - 1)1’2 

g(.) = 1 -Qx+Qx2. 

In terms of the above function +(R) the potential energy may now be written involving 
integration with respect to R only. For p < 1 / 4 2  we have 

- 12 V’{*7r(A2I5 + P I 6 )  + B2&} 

1 / 4 2  
where 

P 
I5 = [ cos2 a,R dR, 1 6  = 1 RlfZa3 exp( -a2R) dR 

0 P 
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and 

f I )  = I 

. -- - _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _  ~ __._.-._ 

f(l6,l) = o  
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30 

I ,  = I R1+2a3 exp( -a2R) +(R) dR. 
1 / 4 2  

When p > 1 / 4 2  the potential energy takes the somewhat different form 

-12V’(A2(&T15 +I6) fB21,) 

the integrals being 
1 / 4 2  

0 1 / 4 2  

I5 = R1 + 2 a 3  cos2 a,R dR, I6 = 1’ cos2 a, R+(R) dR 

and 
30 

I7 = / R1 + 2a3 exp( -a2R) +(R) dR. 
P 


